
Web Application Security Payloads

Andrés Riancho
Director of Web Security
OWASP AppSec USA 2011 - Minneapolis

2

• Short w3af introduction

• Automating Web application exploitation

• The problem and how other tools are not handling it

• Web Application Payloads, our solution
– Vulnerabilities have capabilities!

– Abstracting system calls in payloads

– Our own SCA

– Metasploit integration

– Routing TCP/IP traffic

• Conclusions

Topics

3

• Director of Web Security @ Rapid7

• Founder @ Bonsai Information Security

• Developer (python!)

• Open Source Evangelist

• Deep knowledge in networking , design and IPS evasion.

• Project leader for w3af

andres@rapid7.com$ whoami

4

Short w3af introduction
The features and the behind the scenes story

5

• w3af is an open source Web Application
Attack and Audit Framework
– First version released in March 2007

– Open Source tool (GPLv2.0) to identify and exploit Web
vulnerabilities

– Architecture supports plug-ins (easily extensible)

– Available for free download @ www.w3af.org

• w3af project is sponsored by Rapid7
– Since July 2010

– Full time development resources

– Roadmap, prioritized backlog & structured development process

– Quality assurance

– Back office including marketing and communications

Introduction to w3af

http://www.w3af.org/

6

• In these four years of life, the w3af project has achieved
these goals:
– Continuous, non-stop improvements in features and software

quality

– Good link and code coverage

– A low false negative rate

– Widely known, distributed in most (all?) hacking live-cds

– Packages for most linux distributions

What we’ve achieved

7

• We still have much to acomplish!
– Achieve a completely stable code base

– Increase performance for the core framework features (sending
of HTTP requests, HTTP cache, analysis of responses, threading,
etc.)

• Based on a recent poll, we’re changing our roadmap to
quickly achieve what users need:
– Stability

– Identify 100% of the vulnerabilities - Scan time doesn‘t matter

– Low False positive rate

– Plugin / Extension system documentation

Stable code base and Performance

8

The Web Application
Penetration Tester issue
And how other tools are not covering it

9

Experience on a recent Web Penetration Test

Vuln!
• Identified arbitrary file read in PHP application

+1 hour

•Read configurations, operating system and source code files

•Found an unlinked application directory with “dead-code”

+1 hour
• Identified arbitrary file upload within “dead-code”

•Uploaded file to get unprivileged command execution (www-data)

+3 hours

•Accessed all DB data

•Got root privileges (mysql password == root password)

10

• During this experience we noticed that:

– None of the currently available tools, Open Source or
Commercial, have any post exploitation techniques we could
apply to Web application vulnerabilities in order to escalate
privileges.

– Commercial exploitation platforms provide “exploits and
payloads” to use in best case scenarios, in other words, when
there is control on the execution flow (“exploits for buffer
overflow”).

No web post-exploitation :-(

11

• Exploitation frameworks are focused on memory corruption
exploits because they were the most important vulnerability
class.

• Attention has now shifted to Web applications, which are
different because they only allows us, depending on the
vulnerability, to interact with the system in a particular way:

– Read a file

– Write a file

– Control a section of a SQL query

– Execute user controlled source code

– Execute operating system commands

The reasons

12

Web Application Security
Payloads
Helping you get root from low-privileged vulnerabilities

13

• Which capabilities does a Web application vulnerability export? Two
simple examples:

• Changing our mindset from “buffer overflow” exploits to Web
exploitation with reduced capabilities, we started to define all the
actions that could be done only with read()’s:

– Read Apache config files,

– Read .htpasswd files,

– Get the remote process list,

– Get the list of open TCP and UDP connections, and MANY more.

A paradigm shift in exploitation

Web application vulnerability Capabilities exported

Arbitrary File Read read()

File upload write()
[often restricted to specific directory]

14

• After identifying all actions that could be performed with read() , we
moved on to different scenarios where we analyzed:

– Only write()

– Only exec()

– write() and read() , which is usually found when there are two different
vulnerabilities present.

• Where we realized that we could emulate some syscalls using
others.

A paradigm shift in exploitation

15

• Each exploit exports “system calls”, which are then used by the
payloads:

• Each syscall acts as an abstraction layer, allowing the payload to run
without knowing/caring which exploit is in use.

Emulating other syscalls

Exploit Exported Syscalls Emulated system calls

Local file read read()

Local file include read()

OS Commanding execute() read() , write() , unlink()

DAV Shell write() execute() , read(), unlink()

File Upload write() execute() , read(), unlink()

16

• Syscall emulation is easy in some cases, for example read() is
emulated via the execution of "cat filename" or "type filename",
depending on the OS:

• And in some other cases it is more difficult, write() to exec() can be
challenging due to file system permissions, programming language
configuration and the application itself.

Emulating syscalls

17

• Payloads are usually short code snippets that use a couple
of system calls and have specific knowledge about which
files to read and how to extract information from them:

Simple but powerful pieces of code

Knowledge

read()

Parse

18

Demo “users”
Baby steps

19

Synergy between payloads
re

ad
() System call to

read files u
se

rs Payload that
reads
“/etc/passwd”
and identifies
home
directories in

te
re

st
in

g_
fi

le
s This payload

uses the home
directories and
a list of
interesting
filenames to
search for
passwords.

20

The "interesting_files" payload

interesting_extensions = []

interesting_extensions.append('') # no extension

interesting_extensions.append('.txt')

...

file_list = []

file_list.append('passwords')

file_list.append('passwd')

...

for user in users_result:

home = users_result[user]['home']

for interesting_file in file_list:

for extension in interesting_extensions:

file_fp = home + interesting_file + extension

files_to_read.append(file_fp)

21

Demo “interesting_files”
Treasure hunt

22

• Payloads can take decisions based on facts that were
saved to the knowledge base during the scan:
– Identified vulnerabilities

– Remote Web server type (Apache, IIS, etc.)

– Remote operating system

– Found URLs

• This is one of the biggest advantages of having everything
integrated into w3af!

Payloads are integrated into the framework

23

The "get_source_code" payload

apache_root_directory = self.exec_payload('apache_root_directory')

webroot_list = apache_root_directory['apache_root_directory']

url_list = kb.kb.getData('urls', 'urlList')

for webroot in webroot_list:

for url in url_list:

path_and_file = getPath(url)

relative_path_file = path_and_file[1:]

remote_full_path = os.path.join(webroot,relative_path_file)

file_content = self.shell.read(remote_full_path)

if file_content:

self._save_file_locally(remote_full_path, file_content)

24

Demo “get_source_code”
w3af integration

25

We have the application’s

source code, what now?

w000t!

26

• Web application payloads can easily integrate with other
tools. They are developed in Python, so everything is
possible :)

• Our first stab at this problem was to integrate Pixy as a
payload. The worse thing was that it did not return the
information we needed.

• Together with Javier Andalia from Rapid7 we’ve
developed a PHP Static Code Analyzer as a PoC to show
that it is possible to combine these two technologies:
– Black-Box scanning

– Static Code Analysis

Integration with Static Code Analysis tools

27

• This is how we’re integrating our SCA tool into w3af:

Integration with Static Code Analysis tools

w3af scan
Identify local

file read
Exploit

read() SCA Identify SQLi

Exploit write() exec()

28

• Based on phply, a PHP parser implemented in PLY (Python
Lex-Yacc)

• Identifies the following vulnerabilities:
– SQL Injection

– OS Commanding

– Arbitrary file read

– Remote file inclusion

– eval() vulnerabilities

– Taint analysis

Static Code Analysis characteristics

29

Demo Static Code Analyzer
A step closer to retirement

30

• This SCA was a PoC developed over two weeks, it lacks
many important functions such as:

– Support for require_once() , require(), include_once(), include()

– Better support for loops and if statements

– Classes, methods and attributes

– Detection for all vulnerabilities

• Interested in extending this section of w3af? Contact me!

Static Code Analysis with Taint Analysis

Available payloads and their main focus

32

Payloads with exec()
That was easy!

33

• Great! We found a way to execute operating system
commands using our web application payloads that run
with low privileges, now what?

• When we’re able to execute OS commands everything is
simpler. In these cases, w3af provides the following
payloads:
– msf_linux_x86_meterpreter_reverse

– msf_windows_meterpreter_reverse_tcp

– msf_windows_vncinject_reverse

– w3af_agent

• Allows us to route traffic through the compromised host without
any effort

And when we can execute OS commands…

34

• Develop more MS Windows payloads

• Take actions based on payload results:

– Launch a new scan against a particular resource

– Exploit vulnerabilities using the increased knowledge obtained by w3af’s
payloads

• Our goal is to make this the standard for automatized post-
explotation of Web application vulnerabilities.

Conclusions and pending work

35

• Got an idea? Share it in our mailing list!

http://www.w3af.org/mailing-list.php

• Want to read the code? The source code for the web
application security payloads, w3af agent and metasploit
wrapper can be found in these directories:
– plugins/attack/payloads/

– core/controllers/vdaemon/

– core/controllers/w3afAgent/

– core/controllers/payloadTransfer/

http://w3af.svn.sourceforge.net/viewvc/w3af/trunk/

Sharing your ideas and knowledge is easy!

http://w3af.svn.sourceforge.net/viewvc/w3af/trunk/
http://w3af.svn.sourceforge.net/viewvc/w3af/trunk/
http://w3af.svn.sourceforge.net/viewvc/w3af/trunk/
http://w3af.svn.sourceforge.net/viewvc/w3af/trunk/
http://w3af.svn.sourceforge.net/viewvc/w3af/trunk/

36

• Andrés Riancho

• Director of Web Security

• General Manager of Rapid7’s Web
Application Center of Excellence in
Buenos Aires

• andres_riancho@rapid7.com

• Follow me on Twitter @w3af

Time for your questions!

mailto:andres_riancho@rapid7.com

Thank you!

Web Application Center of Excellence,
Buenos Aires, Argentina

