build | integrate | secure

The Self Healing Cloud

Protecting Applications and Infrastructure with
Automated Virtual Patching

Dan Cornell
CTO, Denim Group
@danielcornell

© Copyright 2011 Denim Group - All Rights Reserved

http://twitter.com/danielcornell

Bio: Dan Cornell

 Founder and CTO, Denim Group
« Software developer by background (Java, .NET)

« OWASP
— San Antonio Chapter Leader
— Open Review Project Leader
— Chair of the Global Membership Committee

« Speaking
— RSA, SOURCE Boston
— OWASP AppSec, Portugal Summit, AppSecEU Dublin
— ROOTS in Norway

© Copyright 2011 Denim Group - All Rights Reserved

Denim Group Background

« Secure software services and products company

— Builds secure software

— Helps organizations assess and mitigate risk of in-house developed and third party
software

— Provides classroom training and e-Learning so clients can build software securely
« Software-centric view of application security

— Application security experts are practicing developers

— Development pedigree translates to rapport with development managers

— Business impact: shorter time-to-fix application vulnerabilities
« Culture of application security innovation and contribution

— Develops open source tools to help clients mature their software security programs
* Remediation Resource Center, ThreadFix, Sprajax
— OWASP national leaders & regular speakers at RSA, SANS, OWASP, ISSA, CSI

— World class alliance partners accelerate innovation to solve client problems

© Copyright 2011 Denim Group - All Rights Reserved

The Cloud!

© Copyright 2011 Denim Group - All Rights Reserved

An Apology

« Did anyone attend this talk because it had the word “cloud” in the title?

 Ifso... I'msorry
— Marketing made me do it

— But this really does apply to certain aspects of “the cloud”
— [promise...

 Atleast we didn’t mention Advanced Persistent Threats
— Yet...

© Copyright 2011 Denim Group - All Rights Reserved

Who Is Your Worst Enemy?

9
- i

© Copyright 2011 Denim Group - All Rights Reserved

The Problem

« Code with automatically-identifiable security vulnerabilities gets
deployed

« Trolling attackers find vulnerabilities and exploit them

Profit?

© Copyright 2011 Denim Group - All Rights Reserved -

A Proposed Solution

1. Identify newly-
deployed code

2. ldentify vulnerabilities

3. Block traffic that
would exploit those
vulnerabilities

© Copyright 2011 Denim Group - All Rights Reserved

Other Potential Solutions

* Run a web application firewall (WAF)
— You do not have one
— Code changes too frequently for WAF training
— WAF blocked legitimate transactions and is back in training mode

* Find the vulnerabilities and fix the code
— Prioritization of new features over security fixes
— Code deployments take too long

* Do not introduce the vulnerabilities in the first place
— Very funny...

© Copyright 2011 Denim Group - All Rights Reserved -

-- build | integrate | securg -===--

Step 1: Identify Newly-Deployed Code

« Wait to be notified
about new application
deployments by the
development teams

e Scan your network
space for new servers
and applications

« Monitor files and
directories

© Copyright 2011 Denim Group - All Rights Reserved

Step 2: Identify Vulnerabilities

« Manual testing
« Automated scanning

« Manual-assisted
scanning

© Copyright 2011 Denim Group - All Rights Reserved

Step 3: Block Traffic That Would Exploit

Vulnerabilities

« Generate virtual
patches to block traffic
to identified
vulnerabilities

,',‘,.'." 2 i e 5 .l,“ yoay » EN o
P > F : o I3 ‘ pa % ; . . » “‘. R ,‘(\
© Copyright 2011 Denim Group - All Rights Reserved 11

7 .
-

\\
7

\ -+ “a \\\\
-

AN
AR

Virtual Patching

« Connect vulnerability
scanners to
IDS/IPS/WAF systems

« Map data from
sensors back to data
about vulnerabllities

© Copyright 2011 Denim Group - All Rights Reserved

Solution Specifics

« Code Change Detection: Watch for filesystem changes
— Could wire up to diffs of nmap scans but this was easier given test environment

* Vulnerablility Detection: Automated skipfish and w3af scans
— Open source technologies: anyone can replicate
— Ability to run unattended

« Blocking Traffic: Rules for snort and mod_security
— Open source technologies: anyone can replicate
— Rule compatibility

© Copyright 2011 Denim Group - All Rights Reserved

Skipfish Vulnerability Data

g Ez &, Terminal — bash — 80x24

© Copyright 2011 Denim Group - All Rights Reserved

ulr issue_samples = [
{ 'severity's 4, 'type': 50183, ‘samples': [

{ 'url': 'http://102.16B.1.28/demo/Evallnjection2.php', 'extra': 'response t
0 Z\K2TWx22 different tham to \x5c\x2T7T\x5ch\x22', 'dir': '_i@s@8' 1},

{ 'url': 'http:/f192.168.1.28/demo/LDAPInjectionZ.php', 'extra': 'response t
o \2TWx22 different tham to \x5c \x27\x5ch\x22', ‘'dir': '_i@Bf1' },

{ 'url': 'http://192.16B.1.208/demo/S0LI2.php', 'extra': 'response to \x27h\x2
2 different than to \x5chx27\x5ci\x22', 'dir': '_i@/2' } 1]

L
{ 'severity's 3, 'type': 48581, 'samples': [

{ 'url': 'http:/f192.168.1.28/demo/PathTraversal.phptaction=./PathTraversal.
php', 'extra': 'responses for ./val and .../fval look different', ‘'dir': '_il/@'
1

{ 'url': 'http://192.16B.1.28/demo/PathTraversal.phptaction=.\x5cPathTravers
al.php', 'extra': 'responses for .%x5cwval and ...%\x5cval look differemt', 'dir':

'_i1/1t]
h
{ 'severity's 3, 'type': 484082, 'samples': [

{ 'url': 'http://1092.168.1.28/demo/SOLIZ.php', 'extra': 'SOL server error',

‘dir': '_iZ/8' 1} 1]

},

{ 'severity's 3, 'type': 48481, 'samples': [
@

NEI =)

© Copyright 2011 Denim Group - All Rights Reserved

w3af Vulnerability Data

8&nn Terminal — vim — 80x24

Iﬂvulnerability id="[426B]" method="POST" name="05 commanding vulnerability" B
plugin="osCommanding" sewverity="High" url="http://192.168.1.28/demo/05CommandIn]
ectionZ.php" var="fileName"=

05 Commanding was found at: "http://192.168.1.208/demo/0%CommandInje
ctionZ.php", using HTTP method POST. The sent post-data was: &guot;fileMame
=%7Cping+-n+3+localhost". This wvulnerability was found in the reguest with
id 42RE.

<fvulnerability=

=vulnerability id="[4518, 4519]" method="POST" name="Blind SOL injection wul
nerability"” plugin="" severity="High" url="http://1092.168.1,208/ /demo/SQLIZ.php" v
ar="username"=

Blind S0L injection was found at: Squot:;http://192.168.1.208/demo/S0LIZ.p
hp", using HTTP method POST. The injectable parameter is: "usernamekaqu
ot;. This wvulnerability was found in the requests with ids 4518 to 4518.

=fvulnerability=

evulnerability id="[4883]" method="POST" name="50L injection vulnerability"
plugin="sqli" severity="High" url="http://192.168.1.208/demo/50LI2. php" var="user
name''=

S0L injection in a MySQL database was found at: Lquot;http://192.16B.1.2
B/demo/S0LIZ. phphquot;, wsing HTTP method POST. The sent post-data was: "us
ername=d' z&kquot; @". This vulnerability was found in the request with id 488
3.

<fvulnerability=

MR —)

© Copyright 2011 Denim Group - All Rights Reserved

IBM Rational AppScan Vulnerability Data

g Ez &, Terminal — vim — 80x24

P<IssueTypes="M L
=Total=1B=/Total="M -
=IssueType ID="attBlindSqlInjectionStrings" Count="2"="M

<RemediationID>fix_52080@8=/RemediationID="M
<advisory="H
=name=Blind S0L Injection</name="M
<testDescription=Application-level test</testDescription="M
=threatClassification="M
=name=Command Execution: S0L Injection</name=>"M
=zreference=http: //www.webappsec.org/projects/threat/classesssql_inje
ction.shtml=/reference="M
=fthreatClassification="M
<testTechnicallDescriptions="M
=textsWeb applications often use databases at the backend to interac
t with the emterprise data warehouse. The de-facto standard language for gueryin
g databases is SQL {each major database vendor has its own dialect). Web applica
tions often take user input (taken out of the HTTP request) and incorporate it i
n an 50L query, which is then sent to the backend database. The query results ar
e then processed by the application and sometimes displayed to the user.</texts"
M

<br /="M
<br /="M

NEI == |

Vulnerability Data

* Normalize what is provided by the scanners

* De-duplicate the results
— Allows for use of multiple scanning technologies

* (vulnerability type, vulnerable url, injection_point)
— Typically needed for injection-type vulnerabilities: SQL injection, XSS

* (vulnerability type, vulnerable url)
— Sufficient for some vulnerabilities: Predictable resource location, directory listing

© Copyright 2011 Denim Group - All Rights Reserved

Vulnerability Data — What Else Do We Need?

« Standardized access to payload information would be nice

« Current rules have potential for false blocks
— SQL injection: Is the problem based on the code mis-handling ‘ or *

© Copyright 2011 Denim Group - All Rights Reserved

Virtual Patches - Snort

g MO Terminal — vim — 80x24
Irop tcp $EXTERMAL_MET any —-> $HTTP_SERVERS $HTTP_PORTS {uricontent:"/demo/Evall B
njectionZ.php'; msg:"S0L Injection attempt'; flow: to_server,established; pcre:" -~
FOvn | ™8T &) (command= [*NE | Wnd#0 ! | \%27 |\ | \%22 | — | \%20\%2D)) /1"; classtype:Web-a
pplication-attack; sid:108088;)"M

drop tcp $EXTERMAL_MNET amy -= $HTTP_SERVERS $HTTP_PORTS (uricontent:"/demo/LDAPI
njectionZ.php"; msg:"S0L Injection attempt"; flow: to_server,established; pcre:"
FOun |~ |87 &) (username=["NE& | wnlsd ' | W%27 0" | W%22 | — | W%200%2D)) /1"; classtype:wWeb-
application-attack; sid:1@88081;)"M

drop tcp $EXTERMAL_MET anmy -= $HTTP_SERVERS $HTTP_PORTS (uricontent:"/demo/SQLIZ
.php"; msg:"S0L Injection attempt"; flow: to_server,established; pcre:"/{Wn|™|\7?
| %&) fusername=["\E|Wnl#l " [W%2T7 |\ |\%22 | —— | \%20%%2D)) /i"; classtype:Web-applicati
on—attack; sid:108882;)"M

drop tcp SEXTERMAL_MET anmy -= $HTTP_SERVERS $HTTP_PORTS (uricontent:"/demo/PathT
raversal.php"; msg:"Path Traversal attempt"; flow: to_server,established; pcre:"
FOvn | ™87 &) laction=["\&|\vnl*(. |\%2e))/1i"; classtype:Web-application-attack; si
d:100803;)~M

@
@
a

:‘\\\qu——————H

© Copyright 2011 Denim Group - All Rights Reserved

Virtual Patches — mod_security

g OI) O,) Terminal — vim — 80x24

rity:'2'Q
SecRule ARGS:password "=|%%3C|=|\%3E"
M

SecRule REQUEST_URI “~\/demo\/Evallnjection2\.php""phase:2,chain,deny,msg: ' 'Cross
-site Scripting attempt: fdemo/EvallnjectionZ.php [command]',id:'1@8881"',severit
y: I2III

SecRule ARGS:command "=|%%3C|=|%\%3E"

“M

SecRule REQUEST_URI "\ /demo\/X55-reflected2\.php""phase:2,chain,deny,msg: 'Cross
-site Scripting attempt: Sdemo/X55-reflectedZ.php [username]',id:'18@882',severi

ty: I2III
SecRule ARGS:usernmame "= |%%3C|=|\%3E"
M

SecRule REQUEST_URI “~\/demo\/XPathInjection2\.php""phase:2,chain,deny,msg: 'Cros
s—site Scripting attempt: sSdemofXPathInjection.php [username]',id:'1@8883',seve

rity:'2'"
SecRule ARGS:usernmame "< |%%3C|=|\%3E"
M

SecRule REQUEST_URI "=\ /demo\/XPathInjection2h.php[*?]#{=|\%3C|=|"\%3E)"" " phase:2,
deny,msg: 'Cross-site Scripting attempt: Sdemo/XPathInjectionZ.php',id:'l@@884°',s
everity:'2'"

SecRule REQUEST_URI “#%\/demo'/XPathInjection2.php""phase:2,chain,deny,msg: 'Cros |
s—site Scripting attempt: fdemosXPathInjection?.php [password]',id:'1@00008',seve ~

ik

L

A

© Copyright 2011 Denim Group - All Rights Reserved

Virtual Patches - Formats

 Two approaches
1. (vulnerability type, vulnerability location)
2. (vulnerability_signature , vulnerability location)

(1) “There is a reflected XSS vulnerability in login.php for the username parameter”

vVersus
(2) “Watch out for HTML-ish characters in login.php for the username parameter”

 The snort and mod_security rules follow approach (2)
» Integration with commercial solutions may use approach (1)

© Copyright 2011 Denim Group - All Rights Reserved

Standard for Virtual Patch Success

» |f the scanner shuts up the vulnerability is considered “fixed”
« Tweak the detection payloads until this is the case for all scanners
« Watch out for overly-aggressive signatures

« But that won’t stop Advanced Persistent Threats!

— True
— But that wasn't really the goal at the current time

© Copyright 2011 Denim Group - All Rights Reserved

Test Environment
U
. >

(-
ﬁ= >
e AR

Scanner / Rule Generator IDS/IPS/WAF Sensor Target Application / Infrastructure

© Copyright 2011 Denim Group - All Rights Reserved

© Copyright 2011 Denim Group - All Rights Reserved

Results

e Short

 mod_security
— Norules
— Compared to Core Ruleset (CRS)

* Why compare to the Core Ruleset?

© Copyright 2011 Denim Group - All Rights Reserved

-- build | integrate | secure:===--
Snort Results
Snortv. 2.9.0.5
All Vulns
Skipfish w3af Total
Normal 20 10 30
Threadfix 10 ? 10

© Copyright 2011 Denim Group - All Rights Reserved

mod_security Results — Raw

Raw Total

Normal

CRS

Threadfix

CRS+Threadfix

Skipfish

32

44

11

18

w3af

14

10

Total

46

54

13

24

© Copyright 2011 Denim Group - All Rights Reserved

mod_security Results — All Vulnerability Types

60

50

40

30

20

10 -

Normal

CRS

Threadfix

© Copyright 2011 Denim Group - All Rights Reserved

CRS+Threadfix

m Skipfish
mw3af

u Total

mod_security Results — Focus on Injection

40

35

30
25
20
15
10 -
0 -

Normal Threadfix CRS+Threadfix

© Copyright 2011 Denim Group - All Rights Reserved

m Skipfish
mw3af

u Total

Trivia and Analysis

« |IDS/IPS/WAF has an impact on the scanning process
— Snort breaks w3af scanning
— mod_security CRS introduces some false positives into skipfish scanning

« mod_security CRS is quite good
— And getting better all the time: SQL Injection Challenge
— http://blog.spiderlabs.com/2011/06/announcing-the-modsecurity-sql-injection-challenge.html

« Virtual patching appears to win for injection flaws

© Copyright 2011 Denim Group - All Rights Reserved

http://blog.spiderlabs.com/2011/06/announcing-the-modsecurity-sql-injection-challenge.html
http://blog.spiderlabs.com/2011/06/announcing-the-modsecurity-sql-injection-challenge.html
http://blog.spiderlabs.com/2011/06/announcing-the-modsecurity-sql-injection-challenge.html
http://blog.spiderlabs.com/2011/06/announcing-the-modsecurity-sql-injection-challenge.html
http://blog.spiderlabs.com/2011/06/announcing-the-modsecurity-sql-injection-challenge.html
http://blog.spiderlabs.com/2011/06/announcing-the-modsecurity-sql-injection-challenge.html
http://blog.spiderlabs.com/2011/06/announcing-the-modsecurity-sql-injection-challenge.html
http://blog.spiderlabs.com/2011/06/announcing-the-modsecurity-sql-injection-challenge.html
http://blog.spiderlabs.com/2011/06/announcing-the-modsecurity-sql-injection-challenge.html
http://blog.spiderlabs.com/2011/06/announcing-the-modsecurity-sql-injection-challenge.html
http://blog.spiderlabs.com/2011/06/announcing-the-modsecurity-sql-injection-challenge.html

Where Is This Useful?

« Environments where you have little or no control over deployed code
— XaaS - PaasS, laaS
— 99% of all corporate data centers

« Environments where you have a large “application security debt”
— Actual code fixes: take time and can be hard to get on the schedule

© Copyright 2011 Denim Group - All Rights Reserved

What Are The Problems?

« Current vulnerability data formats only allow for coarse-grained virtual
patches
— Can lead to false blocks

« Virtual patches likely will not stop well-informed, determined attackers
— See the results of the mod_security SQL Injection Challenge

© Copyright 2011 Denim Group - All Rights Reserved

Next Steps

« MOAR DATAIl

— Target applications
— Live traffic

« Develop import support for more scanner technologies

« Create virtual patch signatures for new vulnerability classes
— “Borrow” emerging CSRF protection from mod_security CRS?
— There are limitations on what can be done but we are not there yet

« Create virtual patches for new IDS/IPS/WAF technologies

© Copyright 2011 Denim Group - All Rights Reserved

Questions

Dan Cornell
dan@denimgroup.com
Twitter: @danielcornell

www.denimgroup.com
(210) 572-4400

© Copyright 2011 Denim Group - All Rights Reserved

mailto:dan@denimgroup.com
http://twitter.com/danielcornell

