
Secure Programming
Support in IDE

Bill Chu, Jing Xie
Department of Software and Information Systems
University of North Carolina at Charlotte
billchu, jxie2@uncc.edu

9/21/11
(c) Bill Chu and Jing Xie All rights reserved

September 2011 1

Overview
n  Software vulnerabilities is a major contributor to

information security problems
n  Education and training is critical
n  But even the most experienced developers make

mistakes
n  Tool support

q  Static and dynamic analysis tools are reactive
q  More effort is needed to proactively support programmers

avoid making mistakes in the first place
q  Include developers in the “security loop”

9/21/11
(c) Bill Chu and Jing Xie All rights reserved

September 2011 2

Causes of developer errors
n  Don Knuth’s case study on TEX

Knuth documented 867 errors over a period of 10 years.
368 errors were implementation errors, the rest are
requirements / design errors. Mistake of omission is
the largest contributor of implementation errors.

“Here I did not remember to do everything I had intended, when I
actually got around to writing a particular part of the code. .. This
seems to be one of my favorite mistakes: I often forget the most
obvious things”

9/21/11
(c) Bill Chu and Jing Xie All rights reserved

September 2011 3

Knuth, D. The errors of TeX – Software: Practice and Experience 19(7) 1989

Causes of developer errors

n  Disconnect between conceptual understanding of secure
programming and its practice

n  Our interviews of professional programmers indicates a clear
pattern of programmers having a solid conceptual understanding
of security but do not consistently apply them in practice
q  Reliance on framework and /or process
q  Input validation: functional/business vs. security

9/21/11
(c) Bill Chu and Jing Xie All rights reserved

September 2011 4

Jing Xie, Heather Lipford, Bill Chu “Why programmers make security errors?” IEEE Conference on
Visual Language and Human Centered Computing , 2011

Our Approach
n  Many common software vulnerabilities are caused by the mistake

of omission, e.g.
q  Failure to perform input validation/output filtering
q  Failure to check security invariants before performing critical actions

n  CSRF
n  Broken Access Control

n  Interactively identify common secure programming issues using
reliable heuristics

n  Enable developers to select appropriate actions while they are in
the process of composing the program
q  Interactive code refactoring
q  Interactive code annotation

n  ASIDE (Application Security in IDE plugin for Java and
Eclipse) prototype

9/21/11
(c) Bill Chu and Jing Xie All rights reserved

September 2011 5

ASIDE Design Rationales

n  Recognition instead of recalling, a key HCI design principle
n  Take full advantage of developer’s application knowledge (e.g. business logic,

application context)
n  Support best secure software development practice

q  Using trusted library (e.g. OWASP ESAPI)
q  Statistics collection

n  Policy driven (adapted to other development environment)

9/21/11
(c) Bill Chu and Jing Xie All rights reserved

September 2011 6

ASIDE Demo
n  ASIDE stands for Application Security in

Integrated Development Environment.
n  Based on Eclipse Java Development Tooling (JDT).
n  Two major features:

Ø  Code refactoring (implemented)
Ø  Code annotation

9/21/11
(c) Bill Chu and Jing Xie All rights reserved

September 2011 7

Jing Xie, Bill Chu, Heather Lipford “Interactive Support for Secure Software Development” in International
Symposium on Engineering Secure Software and Systems, 2011.

Example: interactive code refactoring for input
validation n  Identifying untrusted input requiring validation

9/21/11
(c) Bill Chu and Jing Xie All rights reserved

September 2011 8

9/21/11
(c) Bill Chu and Jing Xie All rights reserved

September 2011 9

Utilize reputable input validation library, e.g. OWASP
ESAPI Validator.

9/21/11
(c) Bill Chu and Jing Xie All rights reserved

September 2011 10

9/21/11
(c) Bill Chu and Jing Xie All rights reserved

September 2011 11

Code refactoring strategies for input validation

9/21/11
(c) Bill Chu and Jing Xie All rights reserved

September 2011 12

Input validation strategy Advantage(s) Disadvantage(s)

Right before critical
operations (e.g. inserting
into database).

Developer knows for sure
the type of input. (e.g. first
name, password, credit
card number, SSN, and
etc.)

Redundant validation: a
variable used in multiple places.
Failure to validate: difficult to
foresee all critical operations.

As soon as an untrusted
input is read into a variable.

Has developer’s attention.
Make sure all untrusted
inputs are validated.

Can lead to false positive.
Does not work well with
dependency injection design
pattern.

ASIDE implementation

n  ASIDE can support either strategy
n  We evaluated a version of ASIDE using the second

strategy and discuss some of our evaluation results

9/21/11
(c) Bill Chu and Jing Xie All rights reserved

September 2011 13

Additional input validation features

n  Semantic validation
q  E.g. once the input is identified as file path, further

restrict to a particular file subtree
q  Bounds of integers

n  For untrusted input of composite type (e.g.
getParameterMap())
q  Perform flow analysis
q  Request for validation as soon as an primitive type (e.g.

java.lang.String) of data is extracted

9/21/11
(c) Bill Chu and Jing Xie All rights reserved

September 2011 14

Code Refactoring Evaluation
n  Target Project: Apache Roller 3.0.0

q  65K+ lines of code
q  Full featured blog server (1.8M+ hits on google for “powered

by Apatche Roller)

n  Comparison base: Fortify SCA based code review

9/21/11
(c) Bill Chu and Jing Xie All rights reserved

September 2011 15

Jing Xie, Bill Chu, Heather Lipford, John Melton “IDE Support for Application
Security” in 27th Annual Conference on Application of Computer Security, 2011 (Acceptance
rate: 18%)

Industry Best Practice Security Audit

n  Performed by John Melton, a member of SSG at a large
financial service company, core committer of OWASP
AppSensor

n  Fortify SCA reported 3,416 issues
n  John manually audited each issue
n  John determined 1,655 issues, as he would have done

according to industry best practice
n  Software of average quality according to John
n  Would take 2.5 days based on standard workload

estimate metrics

9/21/11
(c) Bill Chu and Jing Xie All rights reserved

September 2011 16

Details of Manual Audit
n  Whether appropriate input validation/encoding has

been performed
n  Validate Fortify’s environmental assumptions (e.g.

for log forging, whether logging mechanism has not
been wrapped)

n  Validate Fortify’s trust boundary assumptions
n  Scrutinize input validation and encoding routines

(e.g. black-list filtering)
n  Filter out false positives in DOS warnings

9/21/11
(c) Bill Chu and Jing Xie All rights reserved

September 2011 17

Secure Code Review Results

9/21/11
(c) Bill Chu and Jing Xie All rights reserved

September 2011 18

Critical High Medium Low

Fortify Vulnerability Categories 8 18 2 52

Raw Issues 164 653 13 2,597

Exploitable in Roller 3.0.0 37 397 0 1,221

922 of 1,655 findings are related to lack of proper validation/encoding

Validation /filter of untrusted data

9/21/11
(c) Bill Chu and Jing Xie All rights reserved

September 2011 19

Validation/encoding of untrusted data

n  922 Fortify issues caused by 143 taint sources
q  Primitive data type (e.g. java.lang.String)
q  Composite data type (e.g. java.util.Map)
q  Variables require output encoding always result from untrusted

data
n  ASIDE identified 131 of 143 (92%) taint sources
n  Taint source of composite data type is 41
n  12 issues not detected by ASIDE

q  JSP (not yet implemented in prototype)
q  Framework binding

n  Delayed binding (implementing the Dependency Injection design pattern)

9/21/11
(c) Bill Chu and Jing Xie All rights reserved

September 2011 20

False Positives of ASIDE

n  ASIDE reported 118 more taint sources of
primitive data types
q  Potentially exploitable (94), validate to practice defensive

security
q  False positive (24)

9/21/11
(c) Bill Chu and Jing Xie All rights reserved

September 2011 21

Defensive Security
n  A taint request URL is directly passed into an

InvalidRequestException constructor.

9/21/11
(c) Bill Chu and Jing Xie All rights reserved

September 2011 22

False positives
n  We regard 24 reported taint sources as real false

positives, where inputs are used in ways that do not
lead to any recognized security vulnerabilities.

9/21/11
(c) Bill Chu and Jing Xie All rights reserved

September 2011 23

Figure 5. Untrusted input is used for logic test

Figure 6. Untrusted input is parsed into harmless Boolean value

Summary of benefits of code refactoring
n  Address Validation/Encoding issues at the time of

development
q  Requires no specialized training
q  Capturing application context
q  Saving time to fix vulnerabilities that might be found later in

security code audit
q  Saving efforts in fixing vulnerabilities (e.g. 143 taint sources

vs. 922 issues)

n  Save security code audit efforts
q  Significant reduction of workload (e.g. 922 out of 3,416)

9/21/11
(c) Bill Chu and Jing Xie All rights reserved

September 2011 24

Practical implications for using ASIDE

n  Compliment to static analysis
q  e.g. Generating “cleansing rules” after validation/

encoding to reduce number of issues raised

n  A “light version of static analysis”
q  e.g. handling validation/encoding issues

9/21/11
(c) Bill Chu and Jing Xie All rights reserved

September 2011 25

Interactive Code Annotation
n  Remind developers important program constructs for

secure coding
q  Prevent vulnerable code from being written

n  Annotate key application logic for
q  Source code review
q  Advanced analysis

n  Different from traditional code annotation
q  Annotate security relationship between different parts of the

system
q  Point an click

9/21/11
(c) Bill Chu and Jing Xie All rights reserved

September 2011 26

Interactive Code Annotation Example

n  Database tables
q  user(username,role,surname,givenName)
q  account(accountNumber,nickname,balance)
q  transaction(id,accountNumber,date,payee,amount)
q  account_user(accountNumber,username)

n  All tables are protected by SSG

9/21/11
(c) Bill Chu and Jing Xie All rights reserved

September 2011 27

9/21/11
(c) Bill Chu and Jing Xie All rights reserved

September 2011 28

9/21/11
(c) Bill Chu and Jing Xie All rights reserved

September 2011 29

Context for annotation

n  Where to raise question?

q  Identifying database access functions (e.g. SQL statements),
may be too low level

q  Access routines may be shared in different application threads
q  Identify “use case”/transaction level routines that lead to

accessing protected data
q  E.g. a statement within a Servlet/Action for Java web

applications

n  What is a valid annotation?
q  A set of logic tests, or assertion (e.g. Spring Security)
q  On an execution path from web entry to data access point

9/21/11
(c) Bill Chu and Jing Xie All rights reserved

September 2011 30

Advanced analysis based on annotation
n  Unchecked access path

q  There might be an execution path from web entry to data
access point without access control check

9/21/11
(c) Bill Chu and Jing Xie All rights reserved

September 2011 31

Web entry
point

Data access point

Access control check

Potential
access bypass

Advanced analysis based on annotation –cont (Triangulation)

n  Missing access control check
q  Suppose there are two “use cases” that invoke the same access

function
q  They have different access control checks

9/21/11
(c) Bill Chu and Jing Xie All rights reserved

September 2011 32

Web entry point 1

Data access point

Access control check

Web entry point 2

Access control check
 MAY BE needed

Case Study
n  Open source project

q  Apache Roller (Java): blog server software
q  Moodle (PHP): course management system (CMS)

n  Statistics (bug track & security reports)

9/21/11
(c) Bill Chu and Jing Xie All rights reserved

September 2011 33

Fixed issues
with detailed
information

Code
Refactoring

Code
Annotation

Roller 6 3 1

Moodle 14 1 2

Improper/Insufficient Input Validation

n  3/7 cases are vulnerabilities caused by insufficient
input validation.

n  All these cases can be handled by ASIDE as
described above

9/21/11
(c) Bill Chu and Jing Xie All rights reserved

September 2011 34

Broken Access Control

n  ROL-1701 (https://issues.apache.org/jira/browse/ROL-1701)
n  roller.weblogger.webservices.adminprotocol.

 BasicAuthenticator is vulnerable to authentication
bypass. If invalid headers are passed to it, an
invalid user can gain access to protected resources.

9/21/11
(c) Bill Chu and Jing Xie All rights reserved

September 2011 35

9/21/11
(c) Bill Chu and Jing Xie All rights reserved

September 2011 36

Are web headers valid?

Retrieve credentials

Are credentials valid?

Get all users from DB
Throw an
Exception

No

Yes

No

Yes

Web entry
point

 ASIDE raises
question at Line 52

9/21/11
(c) Bill Chu and Jing Xie All rights reserved

September 2011 37

Web entry
point

Access control check

Potential
access bypass

Data access point

9/21/11
(c) Bill Chu and Jing Xie All rights reserved

September 2011 38

Cross-site Request Forgery

n  2/7 are CSRF vulnerabilities
n  MSA-08-0013 & MSA-09-0008
n  Moodle has developed a pattern to prevent CSRF
n  But it was missed in at least these two cases by

developers

9/21/11
(c) Bill Chu and Jing Xie All rights reserved

September 2011 39

Change an existing user’s profile

9/21/11
(c) Bill Chu and Jing Xie All rights reserved

September 2011 40

Client form
submission

Update database content

ASIDE solution

n  Heuristic: Whenever a form submission/web
request contains operation to update (add, delete,
modify) database entries, the form submission
needs to be checked for CSRF.

n  Raise question at Line 72

9/21/11
(c) Bill Chu and Jing Xie All rights reserved

September 2011 41

Change an existing user’s profile

9/21/11

(c) Bill Chu and Jing Xie All rights reserved
September 2011 42

Client form
submission

Update(delete)
database content

9/21/11
(c) Bill Chu and Jing Xie All rights reserved

September 2011 43

Viktoria Felmetsger, Ludovico Cavedon, Christopher Kruegel, and Giovanni Vigna. 2010.
Toward automated detection of logic vulnerabilities in web applications.
In Proceedings of the 19th USENIX conference on Security (USENIX Security'10).

Admin privilege check adminLogin
(request,response)

Add JSP
web request

Index JSP
web request

You may want an admin
privilege check

Triangulation
 -Open source project JspCart

Applicability to secure coding errors

9/21/11
(c) Bill Chu and Jing Xie All rights reserved

September 2011 44

Secure programming
practices

CWE/SANS top 25 Dangerous Programming Errors

Interactive code
refactoring

XSS(1), SQL injection (2), Untrusted input (6), Path
traversal (7), Dangerous file types (8), OS command
injection (9), Improper control of file name (14), URL
redirection (23).

Interactive code
annotation

Buffer copy without checking size of input (3), CSRF (4),
Improper access control (5), Buffer Access with incorrect
length value (12), Missing authentication (19), Download
code without integrity check (20), Incorrect permission
assigned for critical resource (21), Race condition (25).

Summary of benefits
technique Code refactoring Code annotation
audience

Students Shape awareness, reminder of
secure coding best practices, aid
in grading

Shape awareness, reminder of secure
coding best practices, aid in grading

Professional
developers

Reminder of secure coding best
practices, take care of “grunt
work”

Reminder of secure coding best practice,
advanced analysis

Enterprise Encourage secure coding,
policies, practice and standards,
collect SSDLC statistics

Collect SSDLC statistics, aid in code
review

9/21/11
(c) Bill Chu and Jing Xie All rights reserved

September 2011 45

What do programmers think about Security?
n  Conducted two user studies

q  15 graduate students in web application development class
q  10 professional Java developers

n  Works well for students
q  All used ASIDE functions even though it is not required
q  Most of them felt it was very helpful

n  Mixed reaction from developers
q  Developers are much more focused on functions, they are used to have

warnings not being addressed
q  They need more contextual explanation before they accept code generated

by ASIDE
q  Security savvy developers tend to reject the necessity of secure

programming for code that does not impose immediate vulnerability
threat

9/21/11
(c) Bill Chu and Jing Xie All rights reserved

September 2011 46

Conclusions
n  Introduced two mechanisms to support secure programming in

IDE (interactive code refactoring and annotation)
n  ASIDE’s approach can be an effective addition to best practice

SDLC
q  Preventing vulnerable code
q  Improve efficiency of static analysis

n  ASIDE appears to be effective as an education tool in
universities (NSF funded project to study the effect of ASIDE in
CS1, CS2, and Web programming courses at three universities)

n  Improvements are needed to make it usable by professional
developers

9/21/11
(c) Bill Chu and Jing Xie All rights reserved

September 2011 47

Future work

n  UI design, especially for Annotation
n  Support Web frameworks (Struts I and II, Spring

MVC, etc.)
n  Make ASIDE appeal to professional developers
n  Study the effect of ASIDE in university curriculum

9/21/11
(c) Bill Chu and Jing Xie All rights reserved

September 2011 48

Thank You

n  Acknowledgement
q  National Science Foundation funding
q  Fortify education license

n  Your input
n  https://www.owasp.org/index.php/OWASP_ASIDE_Project#tab=Main

9/21/11
(c) Bill Chu and Jing Xie All rights reserved

September 2011 49

