

Sticking to the Facts
Scientific Study of Static Analysis Tools

Center for Assured Software

National Security Agency

cas@nsa.gov

Agenda

• Background and Purpose

• Test Cases

• Scoring Tool Results

• Data Analysis and Visualizations

• 2010 Study Conclusions

– Open Source vs. Commercial Tools

• 2011 Study Plans

2

Center for Assured Software

3

Center for Assured
Software

• Mission: To positively influence the design,
implementation, and acquisition of Department of
Defense (DoD) systems to increase the degree of
confidence that software used within the DoD’s critical
systems is free from intentional and unintentional
exploitable vulnerabilities

• Strategy:
– Assess and Understand currently available Software

Assurance (SwA) Techniques and Technology

– Influence (Outreach to) the DoD, US Government, Private
Sector and Academia on SwA policy, development,
deployment and research

– Apply and implement current SwA Tools, Techniques and
methods to DoD and Intelligence Community clients

4

Center for Assured
Software

• CAS Technology Focus Area

– Encourages the appropriate use of automation to
measure assurance properties of software

– “Let the code speak”

– Spends a significant amount of time looking for new
software assurance tools, testing tools and reporting on
tools to support software assurance analysis

5

What is Static Analysis?

6

Static Analysis

• Static analysis of software is a method of examining
software without executing it

• Analyzes software itself, not documentation
– Often done on software’s source code

– Can be done on compiled binaries

• Applicable to all software types and languages
– Tools focus on more popular types and languages

• Also known as:
– “Static Code Analysis”

– “Static Program Analysis”

– “Source Code Analysis”

7

Static Analysis Tools

• Static analysis tools automate the process of doing
static analysis

• Commercial and no cost tools are available

• Vary widely in capabilities, features, and cost

• This presentation covers tools that identify and
report issues in the software

• Also known as:

– “Code Weakness Analysis Tools”

– “Static Application Security Testing Tools”

8

Benefits of Static
Analysis Tools

• Identify errors in software (bugs)

– Including security issues

– Good at finding some types of issues

• Analyzes all parts of the software

– Unlike external testing (dynamic analysis) which only
examines the code paths exercised

• Automated, scalable, repeatable

– Unlike manual code review

– Can be used early and often

9

Limitations of Static
Analysis Tools

• Most do not report positive properties (or lack
thereof)

• May report false positives (reports of an issue
where none exists) along with real results

• May report issues that are not important to you or
your software

• Cannot always definitively report issues

– Sometimes report only that an issue may be present at
a location

– Needs confirmation by a human

 10

Limitations of Static
Analysis Tools

• Do not cover all flaw types

– Better at implementation issues vs. design issues

– Scrutinize vendor claims

• Typically miss issues (false negatives)

– May create false sense of security

• Tool coverage is detailed in the next section

11

CAS 2010 Static Analysis Tool Study

12

Study Purpose

• Study capabilities of commercial and open source
static analysis tools for C/C++ and Java

– Identify areas in which individual tools are strong

– Determine how tools can be combined to use strong
tool(s) in each area

• Study does NOT:

– Attempt to choose a “best” tool

– Cover anything other than results
• Cost, performance, ease of use, customization, etc.

13

Tool License Model C/C++ Java

Tool 1 Commercial  

Tool 2 Commercial  

Tool 3 Commercial  

Tool 4 Commercial  

Tool 5 Commercial  

Tool 6 Commercial 

Tool 7 Open Source 

Tool 8 Open Source 

Tool 9 Open Source 

Tools Studied

14

Study Methodology
Overview

• Analyze test cases with each tool in its default
configuration

• Convert the results into a CAS-defined, common,
Comma Separated Value (CSV) format

• Score results
– Mark results relevant to test case as True Positives or

False Positives

– Add False Negatives

• Group test cases into “weakness classes”

• Calculate statistics for each weakness class

15

Differences from
NIST SATE/SAMATE

• We run each tool, not the tool vendor

• We use synthetic test cases instead of natural code

• We know where all the target flaws and non-flawed
constructs are intended to be

• We know what type of flaw and non-flaw each
construct is intended to represent

16

Test Cases

17

CAS Test Cases

• Test cases are artificial pieces of code for testing
software analysis tools

• Each test case contains:

– One flawed construct – “bad”

– One or more non-flawed constructs that “fix” the flawed
construct – “good”

• As much as possible, performs the same function as the flawed
construct

• Test cases cover:

– C/C++

– Java

18

void CWE134_Uncontrolled_Format_String__ 

 scanf_to_printf_01_bad()

{

 char buf[100];

 if (scanf("%99s", buf) == 1)

 {

 /* FLAW: buf (obtained from scanf) is

 passed as the format string to printf */

 printf(buf);

 }

}

Example of a Test
Case

19

static void good3()

{

 char buf[100];

 if (scanf("%99s", buf) == 1)

 {

 /* FIX: Use %s as a format string and

 pass buf as an argument */

 printf("%s", buf);

 }

}

Example of a Test
Case (cont’d)

20

Advantages of Test
Cases

• Control over the breadth of flaws and non-flaws
covered

– Study full range of tools’ capabilities

• Control over where flaws and non-flaws occur

– Allows for automated scoring of results

• Control over data and control flows used

– Study depth of tools’ analysis

– Test cases for many flaw types cover
• Simplest form of flaw

• 18 different control flow patterns

• 22 different data flow patterns

21

Limitations of Test
Cases

• Simpler than natural code

– Tools may have “better” results on test cases than on
natural code

• All flaws represented equally

– Each flaw appears one time in test cases, regardless of
how common the flaw is in natural code

• Ratio of flaws and non-flaws likely much different
than in natural code

– 1 or 2 non-flaw(s) for each flaw in the test cases

– In natural code, non-flaws are likely much more
common than flaws

22

Test Case Scope

• Test cases are currently focused on:

– Functions available on the underlying platform
• Not the use of third-party libraries or frameworks

– Platform-neutral and Windows-specific functions
• No test cases specific to Linux, Mac OS, etc.

– C language vs. C++
• C++ is only used for flaw types that require it (such as leaks of

memory allocated with “new”)

– Java applications and Servlets
• No Applets or Java Server Pages (JSPs)

23

2010 Test Case
Statistics

24

CWEs

Covered

Flaw

Types

Test

Cases

Lines of

Code

C/C++ 116 1,432 45,324 6,338,548

Java 106 527 13,801 3,238,667

All Test Cases 177 1,959 59,125 9,577,215

Test Cases available as Juliet Test Suites at
http://samate.nist.gov/SRD/testsuite.php

Scoring Tool Results

25

Scoring Tool Results

• Vast majority of tool results are automatically
scored with CAS created tool based on:

– CAS created mapping
• Between tool-specific result types and test case CWEs

• Tool results with a type mapped to the test case are “Positives”

– Function name
• “bad”  True Positive

• “good”  False Positive

• Test cases with no True Positives have a False
Negative added

26

Weakness Classes

27

Weakness Classes

• Results are analyzed by assigning each test case
to one of 13 weakness classes

• Weakness classes are defined as a set of test case
CWEs

28

Weakness Classes –
2010

Weakness Class Example Weakness (CWE)
C/C++ Test

Cases

Java Test

Cases

Authentication and Access

Control
CWE-620: Unverified Password Change 604 422

Buffer Handling CWE-121: Stack-based Buffer Overflow 11,386 -

Code Quality CWE-561: Dead Code 440 410

Control Flow Management CWE-362: Race Condition 579 509

Encryption and Randomness CWE-328: Reversible One-Way Hash 298 950

Error Handling CWE-252: Unchecked Return Value 2,790 437

File Handling CWE-23: Relative Path Traversal 2,520 718

Information Leaks
CWE-534: Information Leak Through

Debug Log Files
283 468

Initialization and Shutdown CWE-415: Double Free 9,894 450

Injection CWE-89: SQL Injection 6,882 5,970

Miscellaneous CWE-480: Use of Incorrect Operator 2,304 222

Number Handling CWE-369: Divide by Zero 6,017 2,802

Pointer and Reference Handling CWE-476: NULL Pointer Dereference 1,308 425

29

Precision, Recall, and F-Score

30

Justification

• CAS is concerned with two things:

– What flaws does the tool report?

– What non-flaws does the tool incorrectly report as a
flaw? (false positives)

• CAS uses concepts from Information Retrieval in
examination of static analysis tool results

– Precision

– Recall

– F-Score

31

Precision

• Fraction of results from tool that were “correct”

• Same as “True Positive Rate”

• Complement of “False Positive Rate”

FPTP

TP
Precision

##

#




32

Recall

• Fraction of flaws that a tool correctly reported

• Also known as “Sensitivity” or “Soundness”

FNTP

TP
Recall

##

#




33

F-Score

• F-Score is defined as the harmonic mean of
Precision and Recall

• Combines values into one value to compare

• Tends toward lower value

• Less than arithmetic mean (unless Precision and
Recall are equal)















RecallPrecision

RecallPrecision
ScoreF 2­

34

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1Recall

P
re

c
is

io
n

Finds Most Flaws

F
e

w
 F

a
ls

e
 P

o
s
it
iv

e
s

Finds Few Flaws

M
a

n
y
 F

a
ls

e
 P

o
s
it
iv

e
s

Perfect Tool:

Reports all flaws

and reports only

flaws

Finds more flaws

R
e

p
o

rt
s
 f

e
w

e
r

fa
ls

e
 p

o
s
it
iv

e
s

"Better"

Precision-Recall
Graph

35

Discriminations

36

Justification

• Precision, Recall, and F-Score on test cases don’t
tell whole story

• Unsophisticated “grep-like” tool can get:

– Recall: 1

– Precision: 0.5

– F-Score: 0.67

– Doesn’t accurately reflect that tool is noisy

• Limitation of CAS test cases

– Only 1 or 2 non-flaws for each flaw

37

Discrimination

• A “Discrimination” is a test case where a tool:

– Correctly reported the flaw

– Did not report any false positives
• That is, did not erroneously report any flaws in locations where

no flaw exists

• Each tool gets 0 or 1 discrimination(s) for each test
case

38

Discrimination Rate

• Discrimination Rate is the fraction of test cases
where a tool reported discriminations

• Discrimination Rate ≤ Recall
– Every Discrimination “counts” toward Discrimination

Rate and Recall

– Every True Positive “counts” toward Recall, but not
necessarily toward Discrimination Rate

Flaws

tionsDiscrimina
RatetionDiscrimina

#

#


39

Example Disc. Rate
Graph

40

2010 Study Conclusions

41

2010 Study
Conclusions

• Tools are not interchangeable

• Tools perform differently on different languages

• Complementary tools can be combined to achieve
better results

• Each tool failed to report a significant portion of the
flaws studied

– Average tool covered 8 of 13 Weakness Classes

– Average tool covered 22% of flaws in Weakness
Classes covered

42

Flaws Reported –
2010

C/C++ Test Cases (2010) Java Test Cases (2010)

43

Flaws Reported –
C/C++ 2009 vs. 2010

C/C++ Test Cases (2009) C/C++ Test Cases (2010)

44

• Five tools

• 207 Test Cases

• 207 flaw types

• No data or control flows

• Seven tools

• 45,286 Test Cases

• 1,432 flaw types

• Various data and control flows

Flaws Reported –
Java 2009 vs. 2010

Java Test Cases (2009) Java Test Cases (2010)

45

• Six tools

• 174 Test Cases

• 174 flaw types

• No data or control flows

• Seven tools

• 13,801 Test Cases

• 527 flaw types

• Various data and control flows

Flaws Discriminated –
2010

C/C++ Test Cases (2010) Java Test Cases (2010)

46

Flaws Reported and
Disc. – C/C++ – 2010

47

Flaws Reported and
Disc. – Java – 2010

48

Open Source vs.
Commercial Tools

• Open source C/C++ tool was limited overall

– Reported the flaws in a below-average fraction of the
test cases in every Weakness Class it covered

– Reported an above-average number of False Positives
on five of the seven Weakness Classes it covered

49

Open Source vs.
Commercial Tools

• Two open source Java tools studied had mixed
results on the Weakness Classes they covered

– In three Weakness Classes, an open source tool was
the strongest of all tools (based on F-Score)

• Control Flow Management • Code Quality

• Error Handling

– In four Weakness Classes, at least one open source
tool was stronger than at least one commercial tool

• Information Leaks • Initialization and Shutdown

• Injection • Miscellaneous

– In two Weakness Classes, the open source tools were
the weakest tools

• Auth. and Access Control • Pointer and Reference Handling

50

2011 Study Plans

51

Study Plans for 2011

• Update and expand Test Cases based on
community feedback

• Soliciting input from vendors on configuration
settings to use with their tools

• Considering additional tools

• Study scheduled to start in October 2011

52

Sticking to the Facts
Scientific Study of Static Analysis Tools

Center for Assured Software

National Security Agency

cas@nsa.gov

